Handling Extremely Long Inputs with Inference Algorithms

Woomin Song

Korea Advanced Institute of Science and Technology (KAIST)

Self Introduction: Woomin Song

- Integrated M.S. + Ph.D. Student at KAIST
- Education
 - M.S. + Ph.D. in Artificial Intelligence, KAIST (advisor: Jinwoo Shin), Sep. 2022 Current
 - B.S. in Electrical Engineering, KAIST, Mar. 2018 Aug. 2022
 - Also studied Computer Science (Double Major) and Mathematics (Minor)
- Work Experience
 - Applied Scientist Intern, Amazon AGI team (Host: Sravan Bodapati), Aug. 2024 Aug. 2025

Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers

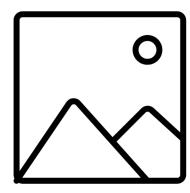
Woomin Song^{1,*}, Sai Muralidhar Jayanthi², Srikanth Ronanki², Khanthashree Mysore Sathyendra², Jinwoo Shin¹, Aram Galstyan², Shubham Katiyar², Sravan Babu Bodapati²

NeurIPS 2025

¹ KAIST, ² Amazon AGI * Work done during an internship at Amazon

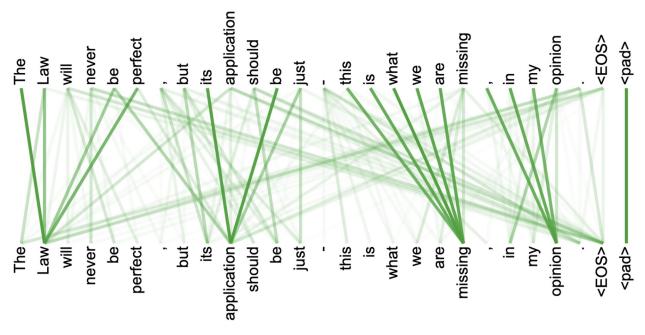
Long-Context Processing

- Long context processing is crucial for real-world applications
 - Processing life-long user interactions
 - Understanding and debugging repository-level codebases
 - Handling multi-modal inputs with extremely long contexts (e.g. videos)



Key Challenges

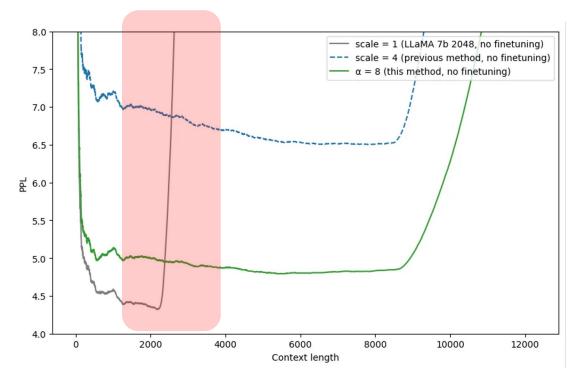
- 1. Computational burden of self-attention
 - Computation grows quadratically with respect to the sequence length
 - Use of Key-Value (KV) cache further introduces high memory requirements



Visualization of Self-Attention [1]

Key Challenges

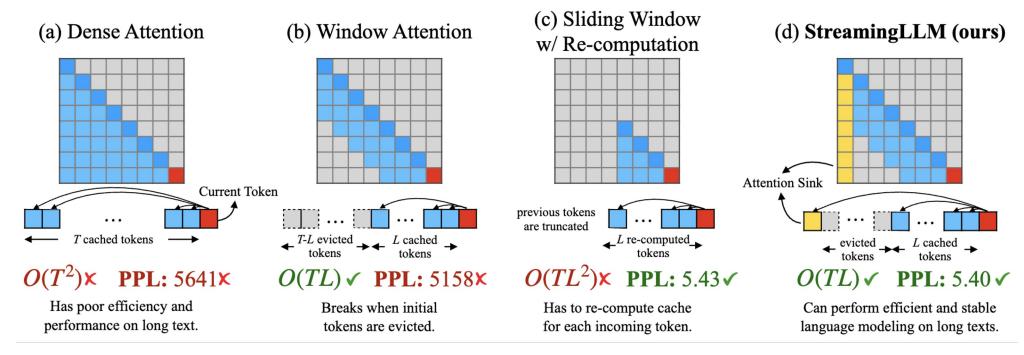
- 2. Pre-trained context limits of Transformers
 - LLMs often fail to generalize to inputs that are longer than their pre-trained context length
 - Extreme long-context training is challenging, due to computational costs and limited data



Degradation of Perplexity (PPL) from LLaMA^[1]

Recurrent Compression Approaches

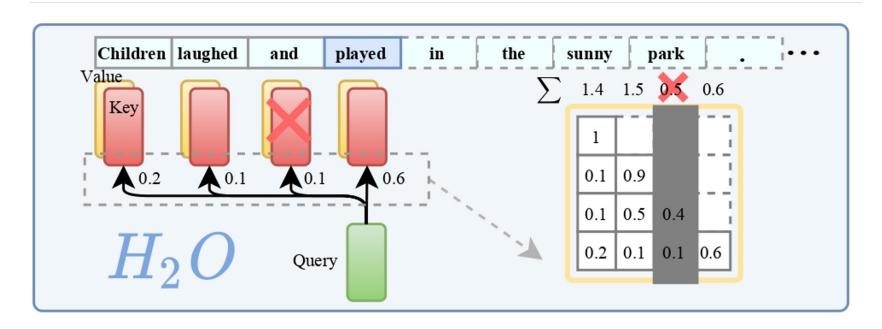
- Iteratively process tokens or 'chunks' based on compressed KV cache
 - StreamingLLM keeps the initial & most recent tokens in the cache
 - Reassign position ids to enable context extrapolation



Concept of StreamingLLM

Recurrent Compression Approaches

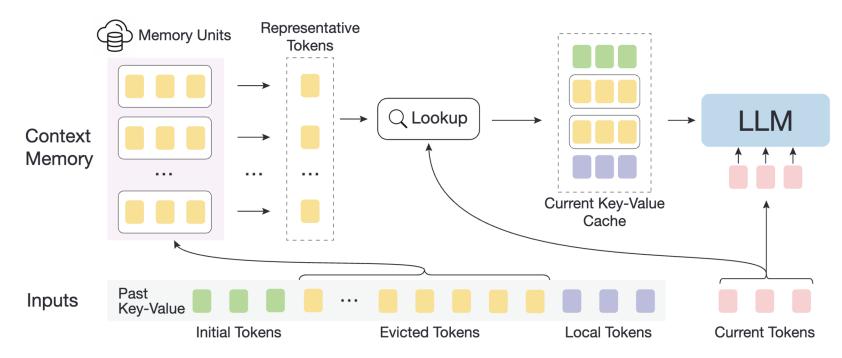
- H2O further keeps the important information with selective eviction
 - Use cumulative attention scores as a proxy to measure token importance
 - Suffer from forgetting issues, where important context is lost during compression



Token eviction criteria of H2O

Random-Access Approaches

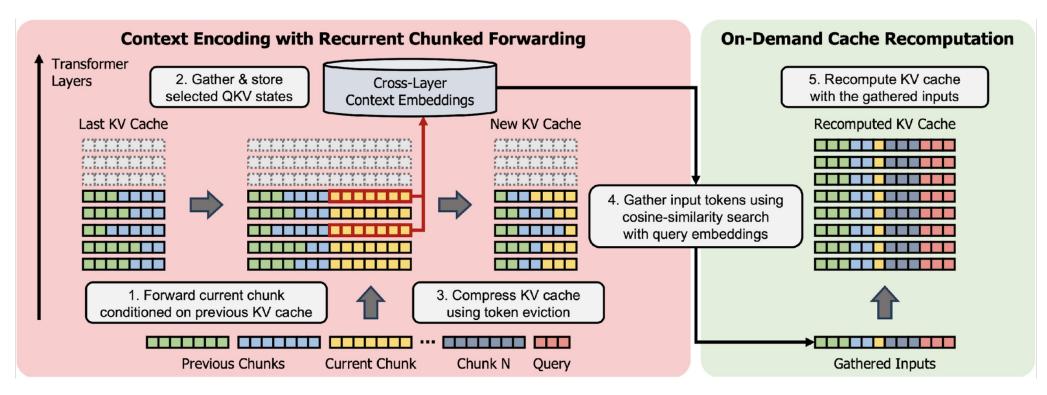
- InfLLM propose to keep the full KV cache, and retrieve tokens on-the-fly
 - Enables random access to any part of the previous input
 - Requires large memory, and adds latency due to memory offloading



Overview of InfLLM

Our Solution: REFORM

- Efficient long-context inference with random access capabilities
 - REcurrent chunked Forwarding with On-demand cache RecoMputation
 - Key idea: Recurrent context encoding + on-demand recomputation



Observation: Attention Heads as Token Selectors

- Cosine similarity of attention QKV embeddings can identify the important tokens for answering a given question.
 - Works better than the attention scores, which are more commonly used as token selectors

This is irrelevant context from Wikipedia documents. This is ... (Passage 1) ... some more text ... (Passage 2) ... some more text ... (question that can be answered by looking at both passages)?

Synthetic Multi-Hop QA Task

This is irrelevant context from Wikipedia documents. This is ... The value corresponding to leofksn21e is 19dksnlese. ... some more text ... What is the value for the key leofksn21e?

Synthetic Pattern Matching Task

$$\texttt{MNR} = \frac{1}{\texttt{len}(\texttt{gold_doc})} \sum_{t \in \texttt{gold doc}} \frac{\texttt{rank}(\texttt{t})}{\texttt{num_tokens}}$$

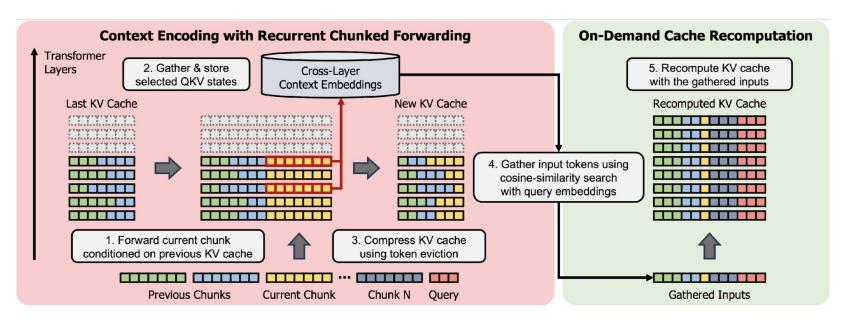
Definition of MNR (Mean Normalized Rank) Score

Type	Dim.	Top-1	Top-2	Top-3	Avg.
Attention	160	6.91	7.70	7.81	7.47
Cosine-HS	5120	9.40	9.63	9.80	9.61
Cosine-Q	160	6.48	6.74	6.93	6.72
Cosine-K	160	6.77	7.31	7.41	7.16
Cosine-V	160	5.77	6.57	6.57	6.30

MNR score of different token selection methods (Lower is better)

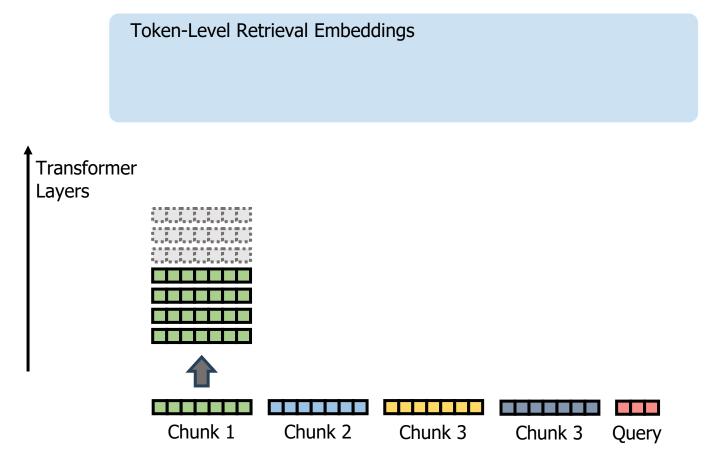
Key Idea

- Propose a 3-stage approach
 - Compress: Use recurrent compression to generate query-unaware, token-level embeddings
 - Gather: Use the embeddings to identify the core tokens from the long input
 - Recompute: Recompute the KV cache with the selected tokens



Concept of REFORM

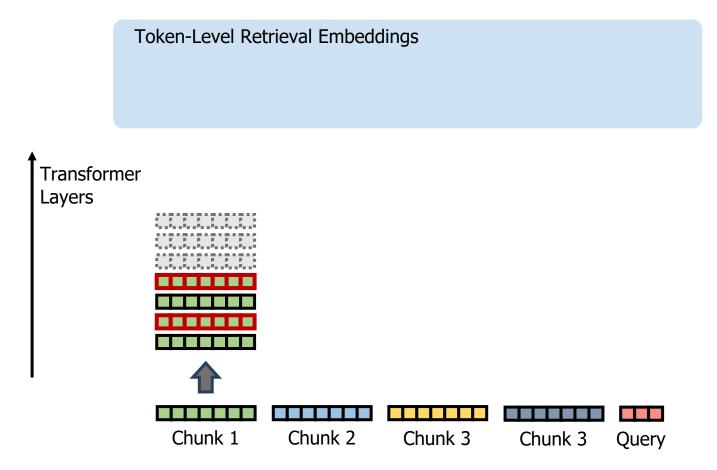
Use recurrence to generate query-unaware, token-level embeddings



Segment the input into chunks.

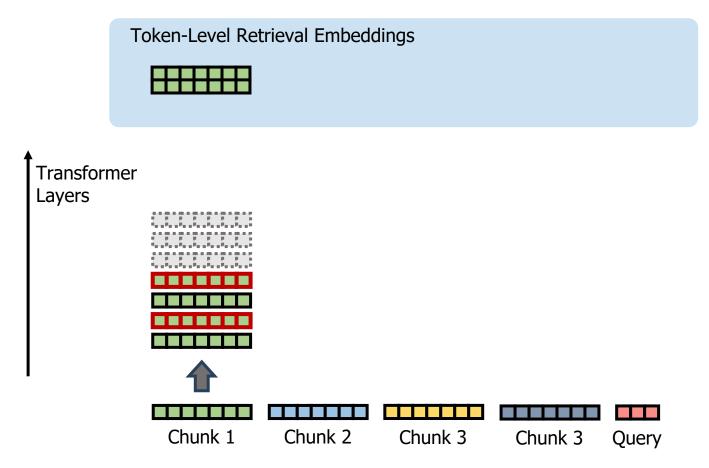
Input is passed through the first few layers (early-exit).

Use recurrence to generate query-unaware, token-level embeddings



Gather selected QKV heads, and save them as token-level retrieval embeddings.

Use recurrence to generate query-unaware, token-level embeddings

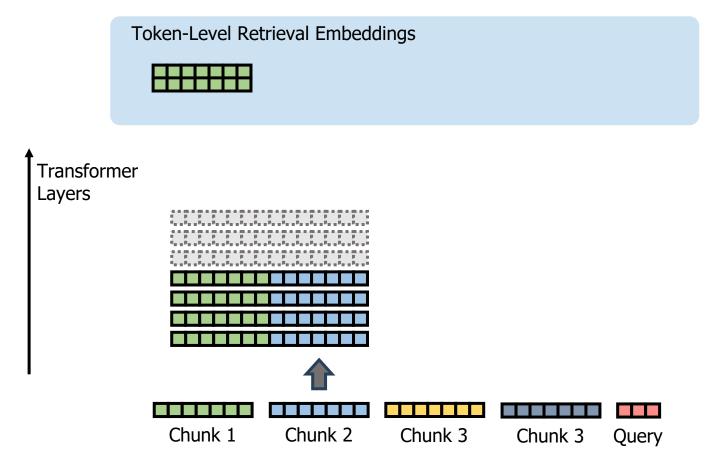


Gather selected QKV heads, and save them as token-level retrieval embeddings.

- Use recurrence to generate query-unaware, token-level embeddings
 - Empirically, we identify four QKV heads using the synthetic datasets (2 from each)
 - We normalize & concatenate them, resulting in a single, cross-layer embeddings
 - Note: Cosine similarity search is equivalent to average cosine similarity scores of the four QKV heads

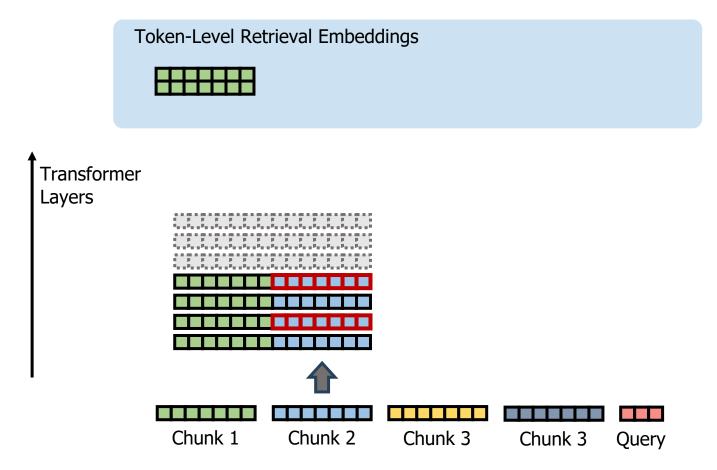
$$e_{\texttt{comb}} = \texttt{concat}\left(\left\{\frac{e_{\texttt{i}}}{||e_{\texttt{i}}||}, \texttt{i} \in \texttt{selected_heads}\right\}\right)$$

Use recurrence to generate query-unaware, token-level embeddings



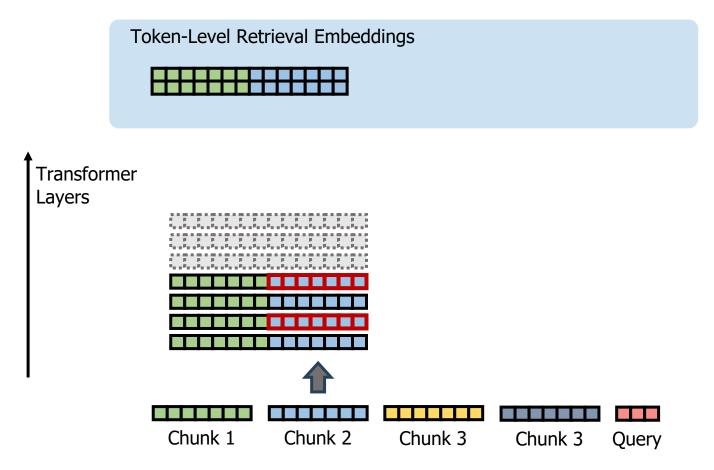
Forward the next chunk, conditioned on the previous chunk's KV cache

Use recurrence to generate query-unaware, token-level embeddings



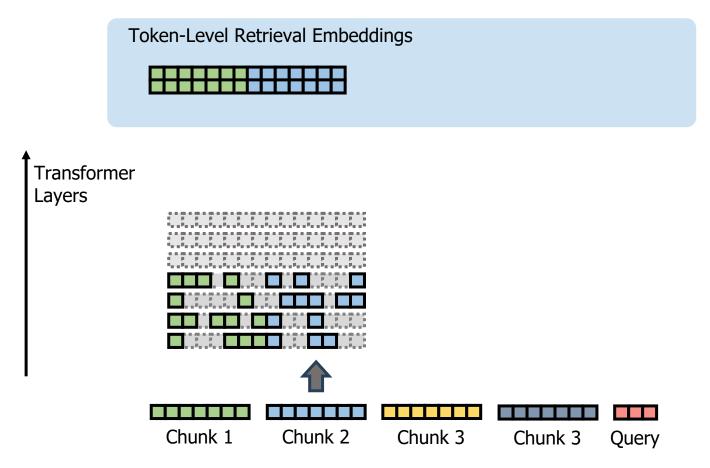
Gather selected QKV heads, and save them as token-level retrieval embeddings.

Use recurrence to generate query-unaware, token-level embeddings



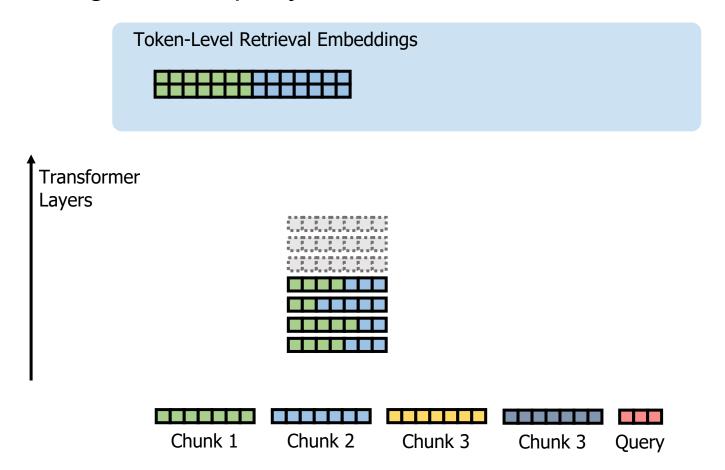
Gather selected QKV heads, and save them as token-level retrieval embeddings.

Use recurrence to generate query-unaware, token-level embeddings



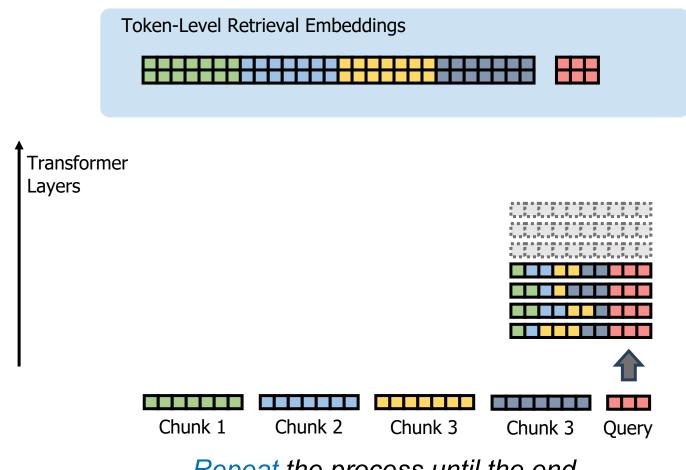
Select surviving tokens from the KV cache in a query-independent way (H2O)

Use recurrence to generate query-unaware, token-level embeddings



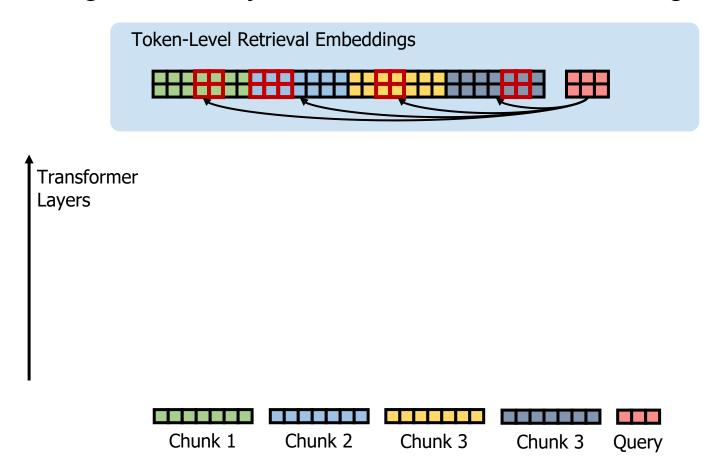
Perform token eviction to compress the KV cache.

Use recurrence to generate query-unaware, token-level embeddings



Repeat the process until the end.

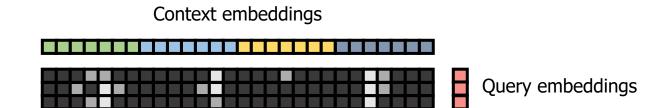
Use the embeddings to identify the core tokens from the long input



Important input segments are identified using cosine similarity search on the token-level embeddings.

How are the significance scores computed?

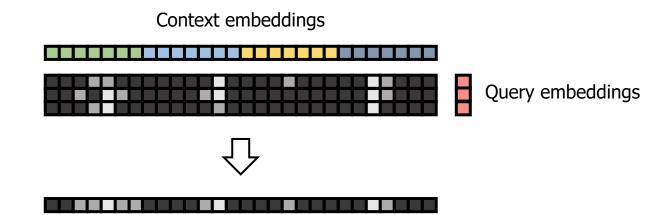
1. Compute cosine similarity scores



How are the significance scores computed?

1. Compute cosine similarity scores

2. Max aggregation along query dimension

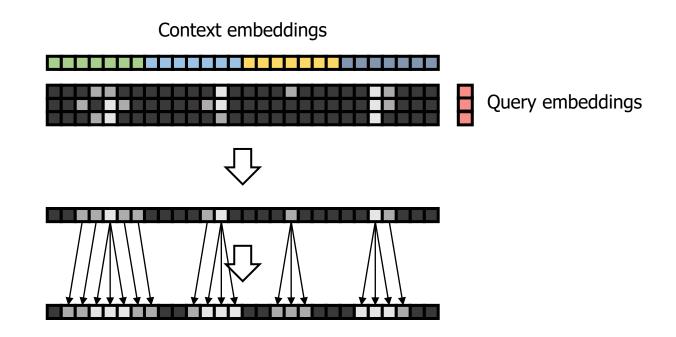


How are the significance scores computed?

1. Compute cosine similarity scores

2. Max aggregation along query dimension

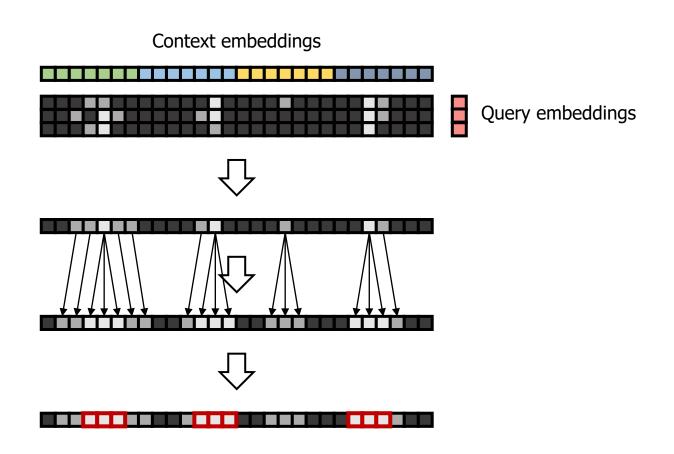
3. Max pooling with neighboring tokens



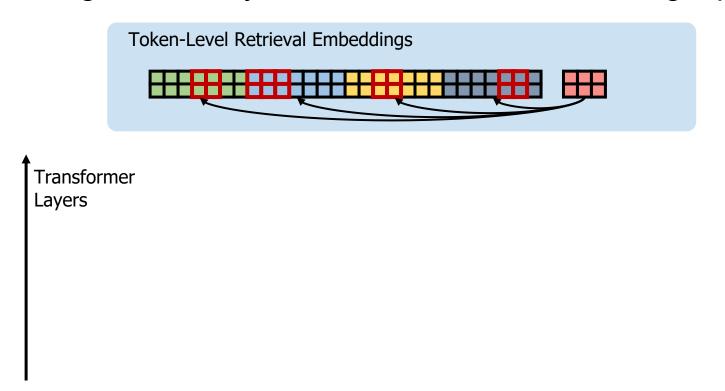
How are the significance scores computed?

1. Compute cosine similarity scores

- 2. Max aggregation along query dimension
 - 3. Max pooling with neighboring tokens
- 4. Select N tokens with the highest score



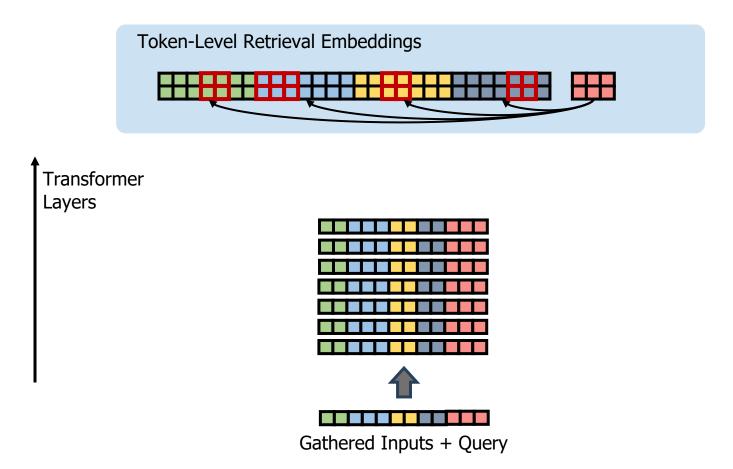
Use the embeddings to identify the core tokens from the long input



Gather the corresponding input tokens.

Recompute: Cache Recomputation Stage

Recompute the KV cache with the selected tokens



Recompute the KV cache by forwarding the gathered inputs. This cache is used for generating further response.

Evaluations: Needle-In-a-Haystack

- REFORM shows perfect recall up to 1M tokens
 - Task setup: Hide a 'needle' sentence in irrelevant text (Paul Graham's essays)
 - All baselines struggle at longer contexts

Needle: The best thing to do in San Francisco is to eat a sandwich and sit in Dolores Park on a sunny day.

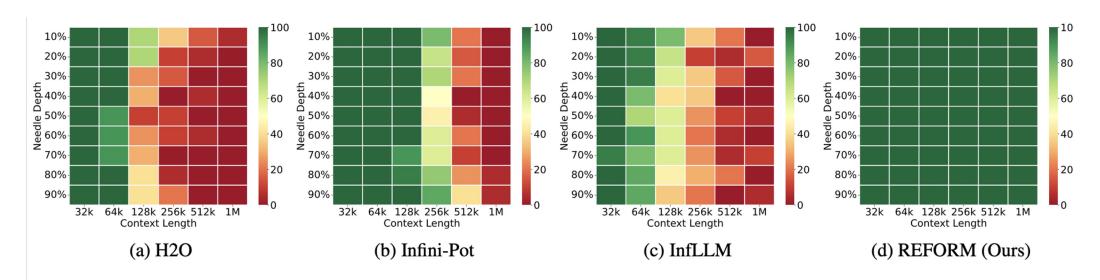


Figure 3. Needle-In-A-Haystack Evaluation. We compare the precise retrieval ability of different long-context handling approaches by visualizing the needle-in-a-haystack performance at different depth and context lengths. All experiments were done with Qwen2.5-7B-Instruct model, and the performance is averaged over 20 samples.

Evaluations: Synthetic Benchmarks

- REFORM outperforms the baselines on two synthetic benchmarks
 - RULER contains more diverse and challenging needle-in-a-haystack tasks, along with aggregation
 Question answering
 - BABILong introduces more challenging tasks (e.g. multi-hop, multi-arg reasoning)

Table 2: **Evaluation on RULER and BABILong.** We measure the performance on an extended version of the RULER [17] and BABILong [18] benchmark. We report the averaged performance of all tasks at different context lengths. The best values are highlighted in **bold**.

		RULER						В	ABILor	ıg		
	64k	128k	200k	300k	400k	500k	1 M	64k	128k	256k	512k	1M
	Mistral-Nemo-Instruct-2407											
Truncation	32.6	20.4	17.8	15.2	12.3	12.5	10.8	32.2	26.2	17.0	13.6	14.0
StreamingLLM	27.6	13.8	11.6	9.3	7.2	7.1	4.7	38.8	23.4	15.4	11.0	6.2
TOVA	21.6	15.3	14.0	11.8	7.9	8.7	4.6	37.8	23.6	14.4	9.6	3.4
H2O	15.1	7.4	7.8	5.6	4.2	5.7	3.6	38.0	25.2	16.2	7.2	3.6
InfiniPot	26.9	19.4	15.6	14.5	12.7	13.4	12.0	39.6	26.8	18.6	11.2	8.8
InfLLM	52.7	39.7	28.5	24.9	20.9	22.0	23.3	40.6	34.0	23.6	13.0	9.6
REFORM (Ours)	79.9	81.1	83.0	84.6	84.1	83.5	75.5	57.4	51.4	50.6	47.6	48.8
				Qwe	en2.5-7B	-Instruc	t					
Truncation	46.3	25.1	21.8	17.4	14.9	15.2	11.3	48.4	33.4	27.4	20.0	15.6
StreamingLLM	43.5	25.3	18.7	17.3	11.8	11.8	9.1	53.4	40.6	33.2	23.8	19.6
TOVA	66.2	27.7	25.7	25.8	21.9	20.4	17.0	56.0	46.6	40.6	29.4	21.8
H2O	51.8	20.9	18.5	17.1	11.6	12.1	8.7	57.0	41.6	36.4	24.6	18.8
InfiniPot	65.7	51.7	39.2	33.9	27.8	26.7	23.7	59.6	51.0	53.4	48.2	40.2
InfLLM	47.1	34.2	29.2	24.0	22.0	23.2	23.8	43.0	29.2	20.4	15.4	11.4
REFORM (Ours)	78.2	75.8	74.7	74.9	74.9	73.0	75.1	61.6	60.4	59.8	58.8	58.8

Evaluations: Diverse Domains & Modalities

Infinite-Bench constructs tasks from more realistic text: long books and dialogues

Table 3: **Evaluation on** ∞ -Bench. We evaluate each method on more 10 datasets from ∞ -Bench [19]. We did not evaluate on C.Run and M.Calc datasets since no method was capable of achieving a nonzero score with these models. The best values are highlighted in **bold**.

	R.PK	R.Num	R.KV	En.Sum	En.QA	En.MC	En.Dia	Zh.QA	C.Debug	M.Find	Avg.
Mistral-Nemo-Instruct-2407											
Truncation	27.1	21.4	3.6	13.7	16.0	51.1	11.5	25.2	28.9	20.3	21.9
StreamingLLM	28.1	15.3	0.0	12.5	12.6	45.9	6.5	19.2	27.2	0.0	16.7
TOVA	82.2	47.0	0.0	12.3	13.8	47.2	8.0	6.6	25.1	4.6	24.7
H2O	31.5	9.5	0.0	14.2	17.6	49.3	6.0	21.2	26.1	15.7	19.1
InfiniPot	84.1	13.6	0.0	11.9	17.1	52.0	7.0	11.3	27.4	15.7	24.0
InfLLM	100.0	100.0	1.0	16.9	17.4	58.1	7.0	24.5	24.1	27.1	37.6
REFORM (Ours)	100.0	100.0	88.2	18.2	18.0	70.3	18.5	26.7	25.9	36.0	50.2
				Qwe	n2.5-7B-Ii	ıstruct					
Truncation	27.1	27.1	7.4	29.0	13.3	43.2	15.0	9.34	37.1	45.7	25.4
StreamingLLM	28.8	28.8	6.0	29.2	8.6	52.4	14.5	9.51	32.5	28.6	23.9
TOVA	100.0	100.0	1.2	29.4	8.6	56.8	15.0	10.65	34.3	42.6	39.8
H2O	93.1	85.4	0.0	31.0	11.0	56.3	15.5	11.97	34.8	44.6	38.4
InfiniPot	100.0	99.8	0.8	30.6	11.3	59.0	17.0	9.99	36.6	44.9	41.0
InfLLM	100.0	99.8	1.6	27.6	9.6	38.0	12.0	10.41	29.7	45.1	37.4
REFORM (Ours)	100.0	100.0	32.8	27.8	16.5	61.6	21.5	11.81	33.0	21.7	42.7

Evaluations: Diverse Domains & Modalities

- RepoEval is a repository-level code completion benchmark
 - Model: Qwen2.5-Coder-1.5B/7B-Instruct
- MM-NIAH showcases performance on multi-modal applications
 - Model: Pixtral-12B-2409

Table 4: **Evaluation on RepoEval and MM-NIAH.** For RepoEval, we report the edit similarity (ES) score on RepoEval api-level completion task and line-level completion task with 1.5B and 7B models. For MM-NIAH, we report normalized performance across input lengths to ensure equal contribution from each context length range. We do not run multi-modal evaluation for InfLLM, as its implementation only supports text-based models. Best results are in **bold**.

Method	RepoEval					MM-NIAH			
	1.5B API	1.5B Line	7B API	7B Line	-	Retrieval	Counting	Reasoning	Avg.
Truncate	54.8	63.9	59.2	59.5		72.2	18.7	51.2	47.4
StreamingLLM	55.0	62.7	59.9	58.4		71.9	17.8	49.8	46.5
TOVA	54.7	62.2	59.7	59.8		82.9	18.8	54.1	52.0
H2O	55.1	63.4	61.2	59.6		83.3	18.9	53.5	51.9
InfiniPot	59.4	68.4	66.2	63.8		85.4	18.8	54.7	53.0
InfLLM	61.8	66.8	64.3	66.3		N/A	N/A	N/A	N/A
REFORM (Ours)	65.3	72.4	68.7	69.4		89.2	22.0	61.3	57.5

Efficiency Analysis

- REFORM improves both inference time and memory requirements
 - Most gains come from the early-exit strategy
 - Upper-layer computations are skipped, and corresponding KV cache is not required

Table 7. Efficiency Analysis. We compare the peak memory usage and inference time required for generating 10 tokens conditioned on 256k inputs. All measurements are made with the Mistral-NeMo-Instruct-2407 model on a single H100 GPU, and are averaged over 10 samples. The best values are highlighted in **bold**.

	Inference Time (sec.)	Peak Memory (GB)
StreamingLLM	36.58	37.34
H2O	41.33	37.85
TOVA	39.46	37.06
InfiniPot	40.90	37.06
InfLLM	129.14	51.62
REFORM (Ours)	27.24	35.00

Efficiency Analysis

- REFORM improves both inference time and memory requirements
 - Lowest latency is achieved across different input length and processing phase

Table 8: **Latency Breakdown.** (a) Time to first token (seconds) measurements and (b) time per output token (seconds) measurements (Mistral-Nemo-Instruct-2407, single H200, averaged over 20 runs and 200 tokens generated per measurement).

(a) Time to first token (seconds).

Model	256k	512k	1M
StreamingLLM	30.59	68.22	143.57
InfiniPot	35.77	73.67	149.64
InfLLM	95.71	213.23	474.96
REFORM (Ours)	26.24	53.68	108.64
- Compress + Gather	25.84	53.28	108.24
- Recompute	0.40	0.40	0.40

(b) Time per output token (seconds)

256k	512k	1 M
0.111	0.111	0.111
0.256	0.256	0.256
0.259	0.267	0.329
0.040	0.040	0.040
	0.111 0.256 0.259	0.111 0.111 0.256 0.256 0.259 0.267

Comparison with RAG

- REFORM has several benefits over RAG
 - Avoids context fragmentation from chunking, by using KV cache compression
 - Architecture-level solution: has broad applicability, and can be seamlessly applied to diverse domain & modalities
 - Does not require an external retriever
- Furthermore, combining them can achieve even higher performance

Table 6. Comparison with RAG. We compare the performance of RAG methods and REFORM on four groups of needle-in-a-haystack datasets from RULER at 300k contexts, using Mistral-NeMo-Instruct-2407 model.

	Single	Multikey	Multivalue	Multiquery
Sparse RAG	86.7	77.3	88.5	90.0
Dense RAG	87.3	57.3	82.5	78.0
REFORM	99.3	93.3	<u>98.5</u>	100.0
REFORM + RAG	99.3	94.7	99.0	100.0

Ablation Studies

- REFORM is compatible with diverse compression approaches.
- Head selection is important for performance.
- Max pooling with adjacent tokens is crucial for maintaining the integrity of cache.

	RULER	BABILong
REFORM (Ours)	84.6	47.6
w/ StreamingLLM w/ TOVA	82.7 81.4	44.6 46.8
w/ Random heads w/ Worst heads	80.3 44.7	43.0 22.8
w/ Kernel size 5 w/ Kernel size 17	18.4 39.4	36.8 45.8

Ablation results.

Appendix

Algorithm

Algorithm 1 Overview of REFORM

```
procedure FORWARDCHUNK(chunk, cache, emb)
   /* Initialize hidden states */
   hs \leftarrow input
   /* Forward with early exit */
   for layer in model_layers[:early_exit_layer] do
       hs, cache, qkv \leftarrow layer. Forward(hs, cache)
       /* Save selected embeddings */
       emb.SaveSelected(qkv)
   end for
   /* Evict less important tokens */
   cache \leftarrow Compress(cache)
   return cache, emb
end procedure
procedure REFORM(input)
   /* Initialize */
   cache, emb \leftarrow EmptyInit()
   /* Prepare input chunks */
   context, query \leftarrow SplitQuery(input)
   chunks \leftarrow ChunkInputs(context) + [query]
   /* Recurrent chunked forwarding */
   for c_i in chunks do
       cache, emb \leftarrow ForwardChunk(c_i, cache, emb)
   end for
   /* Gather relevant inputs */
   relevant_inputs ← GatherRelevant(input, emb)
   /* On-demand recomputation */
   cache ← model.Forward(relevant inputs)
   return cache
end procedure
```

Head Selection

For Mistral-NeMo-Instruct-2407, the following heads are used:

- 1. Query head 9 at layer 15
- 2. Value head 5 at layer 19
- 3. Value head 0 at layer 27
- 4. Value head 7 at layer 27

For Qwen2.5-7B-Instruct, the following heads are used:

- 1. Value head 3 at layer 7
- 2. Key head 0 at layer 14
- 3. Value head 3 at layer 14
- 4. Value head 0 at layer 19

For Qwen2.5-Coder-1.5B-Instruct, the following heads are used:

- 1. Query head 3 at layer 8
- 2. Value head 1 at layer 11
- 3. Key head 0 at layer 14
- 4. Value head 0 at layer 15

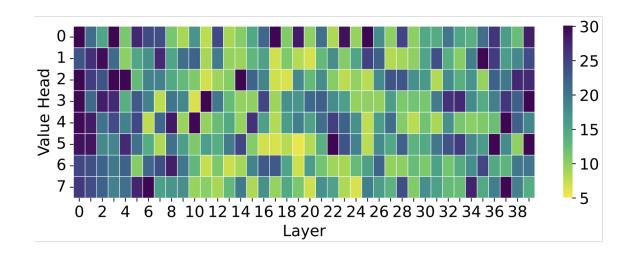
For Qwen2.5-Coder-7B-Instruct, the following heads are used:

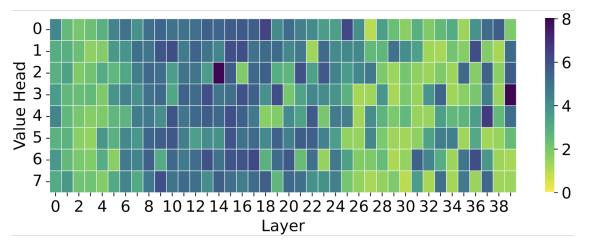
- 1. Value head 2 at layer 13
- 2. Key head 0 at layer 14
- 3. Value head 3 at layer 14
- 4. Query head 4 at layer 14

For Pixtral-12B-2409, the following heads are used:

- 1. Value head 3 at layer 10
- 2. Value head 5 at layer 19
- 3. Value head 0 at layer 27
- 4. Value head 7 at layer 27

MNR Score Distribution





Qwen2.5-32B-Instruct Evaluations

Table 9: **Performance of Qwen2.5-32B-Instruct.** We report the performance on key long-context benchmarks for H2O, InfiniPot, and REFORM. The best values are highlighted in **bold**.

	RULER Single 300k	RULER Multikey 300k	RULER Multivalue 300k	RULER Multiquery 300k	BABILong 256k
H2O	38.7	2.7	14.0	6.0	31.0
InfiniPot	69.3	19.3	40.0	74.0	54.2
REFORM (Ours)	100.0	90.0	96.0	100.0	67.6